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1.  INTRODUCTION1

Household food security (HFS) represents the guiding principle underlying many rural

development projects.  It plays an important role in the targeting of projects, the selection of

appropriate interventions, and the monitoring and evaluation of projects.  HFS is a multifaceted

concept that does not necessarily lend itself to measurement by single, discrete indicators. 

Further, such indicators should reflect the behavior and livelihood conditions of target

populations—those that are most often, and more severely, affected by acute food insecurity

(Borton and Shoham 1991).  These include the rural poor, women-headed households, asset-poor

pastoralists, the landless, recently resettled households, and households constrained by a high

dependency ratio.

The multifaceted nature of HFS implies that reliance on a single indicator is unlikely to

capture all dimensions of food security.  Consequently, Borton and Shoham (1991) suggest 20

core indicators; Frankenberger (1992), and Seaman, Holt, and Allen (1993) each take between 20

and 30 indicators as the starting point; Riely (1993) and Downing (1993) both suggest more than

50 variables; while Currey (1978), one of the earliest practitioners in the field, started with 60

variables for his analysis of vulnerability in Bangladesh.  The large number of potential

indicators presents development practitioners with several, interlinked analytical problems.  First,

it is not always clear what criteria should be used to select a set of indicators out of those

available.  Second, all other things being equal, there is a strong argument for using as

parsimonious a set of variables as possible, but the precise number is difficult to identify in

advance.  In order to do so, it is necessary to determine which variables are influencing each

other and are therefore not "independent" (additive) indicators of vulnerability.  It is also

necessary to attach weights to the variables selected as indicators and the existing literature does

not provide adequate guidance as to how this should be undertaken.  Finally, one would like to

have a sense of the predictive value of these indicators.

This guide introduces development practitioners to a statistical software package,

Classification and Regression Tree (CART), that addresses these problems.  CART is a
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nonparametric technique that can select from among a large number of variables those and their

interactions that are most important in determining the outcome variable to be explained.  (Two

other sets of methods—working closely with local people who can help define indicators of local

significance—and parametric methods for choosing outcome indicators of food security are

described in Technical Guide #6 and #7, respectively.)  In order to illustrate the basic principles

of CART methodology, and to demonstrate the power of this methodology, the guide begins with

an extended example.  It then outlines reviews a number of technical details, including the

hardware and software requirements and how to program in CART.  The concluding section

outlines additional applications as well as describing the strengths and weaknesses of CART

methodology.  Appendix 1 discusses in more detail how CART constructs a classification tree

and  Appendix 2 provides an annotated guide to a sample of CART output.

Development practitioners interested in using CART methodology are encouraged to

consult three documents that provide more information than can be contained in this short guide. 

These are: Classification and Regression Trees: A User Manual for Identifying Indicators of

Vulnerability to Famine and Chronic Food Insecurity (Yohannes and Webb 1998);

Classification and Regression Trees (Breiman, Friedman, Olshen, and Stone, 1984).  This

volume provides a detailed overview of the theory and methodology of CART, and illustrates a

number of examples in many disciplinary areas. A third document is CART: Tree-Structured

Non-Parametric Data Analysis by Steinberg and Colla (1995)—the CART software manual that

provides many details on customizing CART programs.

2.  A CART EXAMPLE:  INDICATORS OF HOUSEHOLD FOOD INSECURITY
IN NORTHERN MALI

Suppose we want to target an intervention to villages that have a high concentration of

food insecure households.  We do not have the resources to conduct a large-scale household

census that measures food security status in all these households, but we do have (1) a smaller

household survey with a measure of food security status, and (2) the ability to ask a few simple 
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questions of each household in our intervention area.  How can we use our existing information

to learn what variables would provide us with an indication of which households are most likely

to be food insecure?  

The information available to us consists of calories available per person for 275

households (these data are taken from a survey in the Zone Lacustre).  Households are separated

into two groups:  food insecure, those where caloric availability is less than 2,030 kilocalories per

day; and food secure, those where caloric availability exceeds 2,030 kilocalories per day.  Table 1

lists approximately 40 possible correlates of household food security. Given the large

number of potential correlates with household food security—and the even larger number of

potential interactions between these, we would like to know how to derive from these data some

simple correlates of food security.  CART is a way of doing so.  Here the dependent variable is

categorical (food secure or not food secure), and so CART produces a classification tree.  Where

the variable is continuous, say calories available per person per day, it produces a regression tree. 

Regardless of the nature of the dependent variable, CART proceeds in the following fashion.

CART begins with the entire sample of households.  This sample is heterogeneous,

consisting of both food-secure and food-insecure households.  It then divides up the sample

according to a "splitting rule" and a "goodness of split criteria."  Splitting rules are questions of

the form, "Is the dependency ratio less than two?" or put more generally, is X # d, where X is

some variable and d is a constant within the range of that variable.  Such questions are used to

divide or "split" the sample.  A goodness of split criteria compares different splits and determines

which of these will produce the most homogeneous subsamples.  Following on from our

example, we would like to disaggregate our sample into food-secure and food-insecure

households.  As there are many variables to consider, there are a large number of possible

disaggregations of the sample.  The approach taken by CART is to produce a very large

disaggregation and then apply a set of rules to reduce these.

Figure 1 is taken directly from the output produced by CART.  (A detailed explanation of

how CART works, and other output produced by the program, are found in Appendices 1 and 2.) 

We assume that caloric availability per person ("CALSDUM") is a good proxy for household

food insecurity (see Technical Guide #7 for a further discussion).  Approximately 35 percent of

all households are food insecure by this definition.  This is shown at the top of Figure 1 in the 
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Table 1—Possible correlates of household food security
VILL1    Village dummy (=1 if village=1, =0 o/w)
VILL2    Village dummy (=1 if village=2, =0 o/w)
VILL3    Village dummy (=1 if village=3, =0 o/w)
VILL4    Village dummy (=1 if village=4, =0 o/w)
VILL5    Village dummy (=1 if village=5, =0 o/w)
VILL6    Village dummy (=1 if village=6, =0 o/w)
VILL7    Village dummy (=1 if village=7, =0 o/w)
VILL8    Village dummy (=1 if village=8, =0 o/w)
VILL9    Village dummy (=1 if village=9, =0 o/w)
VILL10   Village dummy (=1 if village=10,=0 o/w)
HHSIZE   Household Size
CASHGIVE Dummy (=1 if household was given Cash, =0 o/w)
CASHSENT Dummy (=1 if household was sent Cash, =0 o/w)
REMIT    Dummy (=1 if household received remittances, =0  o/w)
ASSTVM1 Total value of male assets
CEMENT   Dummy (=1 if floor of a house is cement, =0 o/w)
MFERT    Dummy (=1 if  male farmer used fertilizer, =0 o/w)
MPEST   Dummy (=1 if  male farmer used pesticides, =0 o/w)
MSEED  Dummy (=1 if  male farmer used improved seeds, =0 o/w)
MLLABOR Dummy (=1 if  male farmer labor is used, =0 o/w)
MINPUT Dummy (=1, if  male farmer used any of the inputs, =0 o/w)
NONAGDUM Dummy (=1, if  any males engaged in non-agricultural activities =0 o/w)
BOENUMM Number of bullocks owned by male household members now
BOEVM Present value of bullocks owned by male household members now
VACNUMM Number of cows owned by male household members now
VACVM Present value of cows owned by male household members now
FFERT Dummy (=1 if female farmer used fertilizer, =0 o/w)
FPEST Dummy (=1 if  female farmer used pesticides, =0 o/w)
FSEED Dummy (=1 if  female farmer used improved seeds, =0 o/w)
FLLABOR Dummy (=1 if  female labor is used,  =0 o/w)
FINPUT Dummy (=1, if  female farmer used any of the inputs, =0 o/w)
ADTNUMF Number of draft animals owned by female household  members now
ADTVF   Present value of draft animals owned by female household members no
ASSTVF1 Total value of female assets
FNNAGDUM Dummy (=1, if  any females engaged in non-agricultural activities =0 o/w)
DEPRAT Dependency ratio
CALSDUM Calorie Dummy (=1 if Per capita daily calories  > 2030, =0  o/w) 
Source: Mali household survey data set, 1998.

box labeled "Node 1."  The "N" refers to the sample size, which recall is 275.  This box is

referred to as the root node.

The first split of the root node is based on female asset holdings being less than or equal to

33825 FCFA.  CART divides the sample into two parts based on this criterion.  The right-hand

branch of the tree goes to a box marked "Node 6."  This refers to households where female asset 
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Figure 1—Classification tree
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holdings exceed this value (hence "class").  There are 118 households in this class (N = 118), of

which 92 are food secure and 26 are insecure.  This node is further divided into two boxes,

Terminal nodes 6 and 7, based on whether household size is less than or equal to, or greater than,

8.5 people.  The left-hand split, Terminal node 6, includes those households where female assets

are greater than 33825 FCFA and where household size is less than or equal to 8.5.  It contains

93 households, virtually all of which are food secure.  As it is not possible to find any variable

that separates this subsample into any more homogeneous subgroups, CART terminates

disaggregation at this level, hence this is a terminal node.  The right-hand split, includes

households where female assets are greater than 33825 FCFA and household size is greater than

8.5.  Here the subsample is evenly divided between food-insecure and -secure households.

The left-hand split leading off from the root node contains households where female assets

are less than or equal to 33825 FCFA.  This contains 157 households, evenly divided between

food-secure and food-insecure households.  This group is then divided by a number of additional

criteria, household size, whether they are residents of village 2 and the value of male assets. 

These disaggregations produce terminal nodes 1 through 5.  Taken collectively, CART has

divided this sample into seven mutually exclusive groups.  Three of these groups (Terminal

nodes 2, 4, and 6) are almost exclusively made up of food-secure households.  In the remaining

four groups, there is a slight predominance of food-insecure households.  These disaggregations

are based on four variables (female assets, household size, location, and male assets).  It took

CART less than 10 seconds to produce these results.

3.  TECHNICAL DETAILS: COMPUTING REQUIREMENTS AND PROGRAMMING

CART is stand-alone software that can run under either DOS or Windows platforms.  The

software comes with two completely documented manuals (Steinberg and Colla 1995; Steinberg,

Colla, and Martin 1998), which are very easy to follow.  The first manual, the main user's guide 

(Steinberg and Colla 1995) provides a comprehensive background and conceptual basis to CART

and the art-of-tree-structured data analysis, detailed listings and explanations of CART command

modes, and discusses how to use CART techniques and interpret results.  It  also contains  a

number of examples and detailed discussions of these.  The second manual (Steinberg, Colla, and
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Martin 1998) is for Windows Operating systems.  In addition to providing a detailed tutorial, the

manual covers the use of menus, the graphic interface, and many other features that are specific

to Windows environment (Windows 3.X, Windows 95/NT). 

For the data analyst who is not familiar with CART, the Window's tutorial is a very good

starting point to learn about CART.  The tutorial provides a guided tour to perform CART

analysis from a simple example, and introduces the analyst to the use of menus (the FILE,

VIEW, SELECT, MODEL, LIMIT, TREE, and the WINDOW and HELP menus), the

interactive "tree navigator," and many other features of Windows. 

Although both the DOS and Windows versions produce the same output, there are several

features of the Windows version that make it particularly attractive.  Most notably, it provides a

graphical display of the tree diagrams—Figure 1 is taken directly from the CART output.  Under

DOS, this diagram has to be prepared manually.  Another useful feature of the Windows version

is that, if the analyst is not satisfied with the optimal or minimum cost tree that is produced by

CART, he/she can make use of a feature called "TREE NAVIGATOR" and immediately

examine/explore different tree topologies from the sequence of trees provided, and pick another

tree for analysis if he/she wishes to do so (Appendix 1 explains the usefulness of this feature). 

CART for the Windows user is not limited to only using menus and menu items.  He/she can also

write programs in batch mode and submit these for analysis.

Hardware and software requirements for CART are listed below in Table 2.

Before running CART, it is necessary to prepare the data set.  This involves selecting

variables for analysis and saving them to a separate file. This file can be either in SAS, SPSS,

STATA, or virtually any other format.  Since CART assumes that all of the variables in the

sample are for use in the analysis, those variables not intended for analysis should not be

included in CART file(s).  It is possible to keep a few variables in the data set that can be

excluded during CART session.  But it is a good practice to keep the number of excludable

variables as few as possible.  This saved data file should be then converted to a SYSTAT file

using DBMSCOPY or any other file translator that comes with CART software.  As in SPSS/PC,

SYSTAT files have extensions 'SYS' as in *.SYS.  Therefore, proper documentation of CART

files and the directories and subdirectories in which CART files reside are essential.
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Use   ‘C:\Ifad\cart\mali11.sys’
exclude hhid
Category vill1 vill2 vill3 vill4 vill5 vill6 vill7 vill8 vill9 vill10  MPEST  MINPUT 
MSEED                  NONAGDUM REMIT FNNAGDUM   FINPUT  FLLABOR  
FSEED  FPEST
               FFERT  MLLABOR   MFERT  CASHGIVE   CEMENT  CALSDUM    
Model calsdum
Misclass cost = 1.4 class 0 as 1 
Output ‘c:\ifad\cart\output1.dat’
Build

Table 2—Hardware and software requirements of CART for personal computer, and
prices

Hardware and Software Requirements

Operating Systems Supported: Windows 3.X/ 95/ NT, DOS

Memory Requirements: This may vary with versions of CART software. CART for Windows is compiled for machines with at
least 32 megabytes of RAM. For Optimal performance, Pentium machines with at least 32 megabytes
of RAM  are recommended.

Hard Disk Space: • A Minimum of 10 megabytes of free space for program files,  additional disk space for scratch files
(required space depends on the data set), and

• Disk drive for reading 3 ½-inch disks.  

Company name: Salford Systems
Address: 8880 Rio San Diego Dr., Suit 1045

San Diego, California 92108
U.S.A.

Web Address: http://www.salford-systems.com 
Telephone: (619) 543-8880
Fax: (619) 543-8888

Technical Support: Available either by telephone, fax or letter.

Number of variables and observations: Computing requires a minimum of 16 megabytes of free memory. Number of
observations and variables supported depend on the available memory.  

Source: Fax message received from Salford Systems,  February 1998, and
http://www.salford-systems.com/technical-CART.html, July 9, 1998.

The next step involves putting together the essential commands to run the software in a

logical order.  As the following example illustrates, the basic program is straightforward,

consisting of only a few lines of code.  These can be entered interactively or submitted as a batch

job.
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The first line locates the data set to be used.  The second tells CART to exclude one

variables from its analysis, HHID.  The third line indicates which variables are categorical

variables.  The next line specifies the dependent variable, here Calsdum.  The Misclass cost line

specifies the penalty associated for misclassifying class 0 households as class 1 households.

Inclusion of the OUT command sends the results to a file, here c:\ifad\CART\output1.DAT. 

Finally, BUILD tells CART to produce a classification tree.  These commands, and further

options are outlined in Table 3.

4.  FURTHER APPLICATIONS, STRENGTHS, AND WEAKNESSES OF CART

There are two important further applications of CART.  First, it can provide a means of

understanding household food insecurity at the household level.  In this case, all variables are

expressed at the household, rather than locality level.  Though some caution is needed in

interpreting these results—CART produces correlates of food insecurity rather than uncovering

causal links, these can be useful during the exploratory phase of work.  Second, CART has been

used extensively in the commercial finance field as a tool for determining who is most likely to

apply, receive, and default on credit.  Drawing on an established data base, CART can identify

what individual-, household-, or locality-level characteristics are associated with say, a higher

rate of loan application or of default.  This information could then be fed back into program

design.

CART's strengths lie in two areas.  Practically, it is easy to install and run.  Once the data

base is established, a simple program generates the results in an easy to understand format.  In

addition

1. CART makes no distributional assumptions of any kind, either on dependent or

independent variables.  No variable in CART is assumed to follow any kind of statistical

distribution. 

2. The explanatory variables in CART can be a mixture of categorical, interval, and

continuous.
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Table 3—Basic CART software commands in SYSTAT

Command Syntax Function (Purpose) Examples

USE USE filename Specifies to CART a file to read USE c:\cart\test1.sys 

EXCLUDE EXCLUDE variable list Excludes from file the variables not needed EXCLUDE hhid code
in the analysis

KEEP KEEP variable list Reads from the file only the variables needed KEEP age sex income
in the analysis

CATEGORY Category variable list Specifies to CART list of categorical variables CATEGORY sex 
in the data set, including the dependent variable
in Classification tree; this is compulsory.

MODEL MODEL variable name Specifies dependent variable MODEL vulner

BUILD BUILD Tells CART to produce a tree BUILD

QUIT QUIT If submitted while in Build, it tells CART to quit
the session; if submitted after CART session,
it tells CART to go to DOS.

SELECT SELECT variable name Selects a subset of the data set for analysis SELECT age> 15
relation operator or SELECT sex=1
constant/character SELECT X>=20

Select      x1='M'
Or

SELECT SELECT variable name Selects a subset of the data set for analysis SELECT age > 15,
relation operator or Wage >300
constant/character

PRIORS PRIORS option Specifies to CART which priors to use PRIORS data
(Choose 1 option only) PRIORS equal

PRIORS mixed
PRIORS=n1, n2,,..,na
(n's are real numbers)

MISCLASS Misclass cost=n classify I Assigns non unit misclassification costs Misclass cost=2 classify
COST as k1,k2,k3/, 1 as 2,3,4/,

Cost=m classify I as k1/, Cost=5 classify 3 as 1
Cost=l classify k1,k2,..,kn Cost=3 classify 1,2,3
as x as 4

METHOD Method=options Specifies splitting rule Method=gini(default) or
(choose 1 option only) Method=twoing or

Method=LS or LAD
Method=LINEAR

OUTPUT OUTPUT filename Sends output to a named file OUTPUT=LMS

TREE TREE tree filename Specifies a file name of a tree to be saved TREE Vulner1

SAVE SAVE filename options Specifies filename for a data set SAVE  predct1
with predicted class(es),
select options to save

CASE CASE options Runs data one-by-one down a CASE
tree, select option(s) to use
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3. CART has a built-in algorithm to deal with the missing values of a variable for a case,

except when a linear combination of variables is used as a splitting rule.

4. CART is not at all affected by outliers, collinearities, heteroscedasticity, or distributional

error structures that affect parametric procedures. Outliers are isolated into a node, and do

not have any effect on splitting.  Contrary to situations in parametric modeling, CART

makes use of collinear variables in "surrogate" split(s).

5. CART has the ability to detect and reveal interactions in the data set.

6. CART is invariant under monotone transformation of independent variables; that is, the

transformation of explanatory variables to logarithms or squares or square roots has no

effect on the tree produced.

7. CART's effectively deals with higher dimensionality; that is, from a large number of

variables submitted for analysis, it can produce useful results using only a few important

variables.

An important weakness of CART is that it is not based on a probabilistic model.  There is

no probability level or confidence interval associated with predictions derived from using a

CART tree to classify a new set of data.  The confidence that an analyst can have in the accuracy

of the results produced by a given model (that is, a tree) is based purely on its historical

accuracy—how well it has predicted the desired response in other, similar circumstances.
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TECHNICAL DETAILS:  BUILDING A CLASSIFICATION TREE

The previous section has provided an extended introduction to CART.  In this section, we

provide a more detailed and more technical explanation as to how CART builds these

classification and regression trees.

The tree building process starts by partitioning a sample or the "root node" into binary

nodes based upon a very simple question of the form:  is X # d? where X is a variable in the data

set, and d is a real number.  Initially, all observations are placed at the root node. This node is

impure or heterogenous since it contains observations of, say both food-secure and food-insecure

localities.  The goal is to devise a rule that will initially break up these observations and create

groups or binary nodes that are internally more homogenous than the root node.  These

disaggregations, or splits from the root node, are generated in the following fashion.

1. Starting with the first variable, CART splits a variable at all of its possible split points (at

all of the values the variable assumes in the sample).  At each possible split point of the

variable, the sample splits into two binary or child nodes.  Cases with a "yes" response to

the question posed are sent to the left node and the "no" responses are sent to the right

node.  It is also possible to define these splits based on linear combinations of variables.

2. CART then applies its goodness of a split criteria to each split point and evaluates the

reduction in impurity, or heterogeneity due to the split.  This is based on the goodness of

split criterion.  This works in the following fashion.  Suppose the dependent variable is

categorical, taking on the value of 1 (if, say a locality is food secure) and 2 (if the locality

is food insecure).  The probability distributions of these variables at a given node t are

p(1|t) and p(2|t), respectively.  A measure of heterogeneity, or impurity at node, i (t) is a

function of these probabilities, i (t) = N(p(1|t), p(2|t) ).  Clearly, i (t) is a generic function. 

In the case of categorical dependent variables, CART allows for a number of specifications

of this function.  The objective is to maximize the reduction in the degree of heterogeneity

in  i (t).
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3. It selects the best split on the variable as that split for which reduction in impurity is the

highest, as described above.

4. Steps 1-3 are repeated for each of the remaining variables at the root node.  CART then

ranks all of the "best" splits on each variable according to the reduction in impurity

achieved by each split.

5. It selects the variable and its split point that most reduced impurity of the root or parent

node.

6. CART then assigns classes to these nodes according to a rule that minimizes

misclassification costs.  Although all classification tree procedures will generate some

errors, there are algorithms within CART designed to minimize these.  For example, in

famine vulnerability, misclassifying a vulnerable household as a nonvulnerable might be

considered a more severe error than misclassifying a nonvulnerable household as

vulnerable.  It is possible for the user to define a matrix of variable misclassification costs 

that recognizes such costs, which are then incorporated into the splitting rule(s). 

Alternatively, the analyst can use the default category of assuming that all

misclassifications are equally costly.

7. Steps 1-6 are repeatedly applied to each non-terminal child node at each of the successive

stages.

8. CART continues the splitting process and builds a large tree.  The largest tree can be

achieved if the splitting process continues until every observation constitutes a terminal

node.  Obviously, such a tree will have a large number of terminal nodes that are either

pure or very small in content.

Having generated a large tree, CART then prunes the results using cross-validation and

creates a sequence of nested trees.  This also produces a cross-validation error rate and from this,

the optimal tree is selected.

APPENDIX 2

SAMPLE CART OUTPUT

This appendix provides an annotated example of output from a CART program.
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Use   ‘C:\Ifad\cart\mali11.sys’
exclude hhid
Category vill1 vill2 vill3 vill4 vill5 vill6 vill7 vill8 vill9 vill10 

MPEST
              MINPUT  MSEED NONAGDUM REMIT

FNNAGDUM
             FINPUT  FLLABOR   FSEED  FPEST FFERT

MLLABOR
             MFERT  CASHGIVE   CEMENT  CALSDUM    
Model calsdum
Misclass cost = 1.4 class 0 as 1 
Output ‘c:\ifad\cart\output1.dat’
Build

 RECORDS READ: 275
 RECORDS WRITTEN IN LEARNING SAMPLE: 275
  
 LEARNING SAMPLE VARIABLE STATISTICS   
 ============================
                                              CLASS
 VARIABLE                   0                1        

OVERALL

----------------------------------------------------------------
------------------

VILL1 MEAN 0.062 0.067 0.065
SD 0.242 0.251 0.248

N 97 178 275
SUM 6.000 12.000 18.000

HHSIZEMEAN 6.897 5.202 5.800
SD 4.091 3.163 3.604

N 97 178 275
SUM 669.000 926.000 1595.000

REMIT MEAN 0.309 0.275 0.287
SD 0.465 0.448 0.453

N 97 178 275
SUM 30.000 49.000 79.000

CART Batch Program Code

This program produces an optimal tree with seven terminal nodes.

CART Output Report (partial output for illustrative purposes)
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AUTOMATIC LEVEL SETTINGS
(partial output for illustrative purpose)
!! This output is only for categorical variables declared in the

category command line in the program. 

NAME       LEVELS    MINIMUM
       -------------------------------------------------------

VILL1                  2            0
VILL2                 2            0
REMIT                2            0
MFERT                2            0
FNNAGDUM      2            0
CALSDUM         2            0

MIX   PRIORS:       0.426        0.574 
!!  These are priors used in this analysis ( Mixed priors). The
probability of observing the food insecure in the population is
43% where as the probability of observing the food secure group
in the population is 57%.  
  
 CURRENT MEMORY REQUIREMENTS
     TOTAL:      48434      DATA:      10725  ANALYSIS:     
37709
 AVAILABLE:  2000000
   SURPLUS:   1951566
 
 BUILD PREPROCESSOR CPU TIME: 00:00:00.33
 
 
 275 Observations in the learning sample.
 File: C:\MALI\CART\MALI11.SYS !! Location of the file

the
    data is read from.

 
 Tree     1 of    11 CPU TIME: 00:00:00.81
 
 
 Cross Validation CPU TIME: 00:00:06.48
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 =============
 TREE SEQUENCE
 =============
!! This is a sequence of subtrees generated from the largest tree by pruning and cross-
validation test. 

 Dependent variable: CALSDUM
 
        Terminal         Cross-Validated         Resubstitution       Complexity
 Tree   Nodes           Relative Cost             Relative Cost        Parameter
 ----------------------------------------------------------------------------------------------------
    1      34         0.873 +/- 0.064               0.210       0.000
    9      15         0.870 +/- 0.064               0.400        0.008
   10     13         0.876 +/- 0.064               0.432        0.009
   11     12         0.898 +/- 0.064               0.448        0.010
   12      9         0.903 +/- 0.064               0.502        0.010
   13      8         0.872 +/- 0.064               0.519        0.010
   14**  7         0.849 +/- 0.064               0.542        0.013
   15     6         0.862 +/- 0.064               0.573        0.018
   16     3         0.916 +/- 0.064               0.690        0.022
   17     2         0.967 +/- 0.064               0.762        0.041
   18     1         1.000 +/- 0.000               1.000        0.136
 
 Initial misclassification cost = 0.574
 Initial class assignment =  0
 

!! Each tree is identified either by the number under the tree column or by the number of
nodes under the ‘Nodes’ column. Usually, a minimum cost tree is identified by a single
asterisk(‘*’) while the optimal cost tree is identified by double asterisk(‘**’). In this
example, the minimum cost tree is itself an optimal tree. For each tree, Cross-validated
relative cost and Resubstitution relative cost are provided. The cross-validated relative cost
is the misclassification cost generated by the application of cross-validation test while
pruning the tree. The Resubstitution relative cost is the misclassification cost generated by
using the learning sample as a test sample. As the number of nodes increase, the cross
validation cost initially drops, reaches a minimum, and then starts rising. The tree for
which the cross-validated cost is the minimum is the ‘minimal cost tree’. The resubstitution
relative cost keeps decreasing as the number of nodes increase. This cost behaves (although
in reverse direction) just like an R-square in regression where R-square  keeps increasing
as the number of variables are added into the model. The following graphs show these
behaviors. The Complexity parameter column depicts, the complexity values used by CART
in the tree pruning algorithm.
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 CROSS VALIDATION RELATIVE COST VS. NUMBER OF NODES
             --------------------------------------------------------------
       1.032 |  .                                                         |
             |                                                            |
       1.001 |*                                                           |
             |    .                                                       |
       0.970 |  *           .                                             |
             |                    .                                       |
       0.939 |             .       .   .                              .   |
             |         .                                                  |
       0.909 |  . *      .  *                                             |
             |                    *                                       |
       0.878 |             *       *                                    * |
             |         *               *                                  |
       0.847 |    .      *                                                |
             |              .     .                                       |
       0.816 |                     .                                  .   |
             |         .   .           .                                  |
       0.785 |           .                                                |
             --------------------------------------------------------------
            1.000            |          17.500           |           34.000
                          9.250                       25.750
 

 C.V. & RESUB (*) RELATIVE COST VS. NUMBER OF NODES
             --------------------------------------------------------------
       1.032 |                                                            |
             |* *                                                         |
       0.929 |    *                                                       |
             |         *   **     **   *                                 *|
       0.826 |           *                                                |
             |  *                                                         |
       0.724 |                                                            |
             |    *                                                       |
       0.621 |                                                            |
             |         *                                                  |
       0.518 |           * **                                             |
             |                    *                                       |
       0.416 |                     *   *                                  |
             |                                                            |
       0.313 |                                                            |
             |                                                            |
       0.210 |                                                          * |
             --------------------------------------------------------------
            1.000            |          17.500            |          34.000
                          9.250                       25.750
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 COMPLEXITY VS. NUMBER OF NODES
             --------------------------------------------------------------
       0.136 |*                                                           |
             |                                                            |
       0.119 |                                                            |
             |                                                            |
       0.102 |                                                            |
             |                                                            |
       0.085 |                                                            |
             |                                                            |
       0.068 |                                                            |
             |                                                            |
       0.051 |                                                            |
             |  *                                                         |
       0.034 |                                                            |
             |    *                                                       |
       0.017 |         * *                                                |
             |             **     **   *                                  |
       0.000 |                                                           *|
             --------------------------------------------------------------
            1.000            |          17.500            |          34.000
                          9.250                       25.750

 Exploratory Build CPU TIME: 00:00:00.11
 
 ===========================
 CLASSIFICATION TREE DIAGRAM  
 ===========================
 
                                                       |
                                     ---------------1---------------
                                     |                             |
                        -------------2------------           ------6------
                        |                        |           |           |
          --------------3-------------
          |                          |
 ---------4---------
 |                 |
               ------5------
               |           |
 
 Terminal Regions
 
 1             2           3         4           5           6           7
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 ==================
 NODE INFORMATION       —Only 1  and last node splits are provided here for illustrativest

 ==================           purposes.
 
           *             Node  1 was split on variable ASSTV1F1
         * *            A case goes left if variable ASSTV1F1 <=    33825.000
        *   *           Improvement =  0.032          C. T. =  0.136     !! Improvement—reduction in
       *  1  *                                                                                      impurity due to the split.
        *   *           Node     Cases     Class              Cost
         * *               1          275           0               0.574               ! Describes distribution of cases
          *                 2          157           0               0.470                   and classes in different nodes 
         * *               6          118           1               0.390                   along with associated costs.
        *   *
    157   118              Number Of Cases            Within Node Prob.
      *       *      Class   Top  Left  Right         Top        Left       Right      ! Within node number
     *         *         0       97     71     26          0.426      0.530      0.278         of cases and class
    *           *        1     178     86     92          0.574      0.470      0.722         probability 
   * *         * *       distribution.
  *   *       *   *       Surrogate                    Split              Assoc.     Improve.
 *   2 *    *  6 *    1 ASSTVF1        s    47425.000        0.714         0.020
  *   *       *   *     2 ASSTVM1       s    33000.000        0.138         0.010
   * *         * *      3 VILL9              s            0               0.134         0.016
    *            *        4 VACVM1        s    37500.000        0.128         0.003
                            5 VACNUMM1  s            0.500        0.114         0.004
 
                          Competitor         Split                 Improve.
                        1 HHSIZE             8.500                0.031
                        2 VILL10               1                      0.024
                        3 ASSTVF1        49887.500          0.021
                        4 VILL7                 1                      0.016
                        5 VILL9                 0                      0.016
===========================
!! Diamond shapes in the figure indicate those nodes are not terminal nodes.

!! Surrogate—These are proxy variables for the main splitting variable. At each node, they
mimic the split of the main variable used in the split. Surrogates are expected to split the
sample into left and right nodes such that within a node, composition of the cases and class
distribution is very similar to the primary splitting variable. They are also useful especially in
situations where a case has missing value for a splitting variable.  Letter ‘s’ indicates that a
split is a standard one. A split is called standard if, for example, as in the above, cases with
ASSTV1F1 <= 33825.000 are sent to the left node, while cases with ASSTV1F1 > 33825.000 are
sent to the right.  The association (Assoc.) column measures the extent of the surrogate’s
variable capability to mimic or predict the actions of the primary splitting variable.  It sounds
like a correlation coefficient, but it is not. By default, CART produces 5 surrogate variables.
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!!  Improvement (Improv.)—Column indicates the reduction in impurity that could have been
achieved had the variable been used as a splitting variable.

!! Competitor—These are competing variables with the primary splitting variable. Had anyone
of these variables been used for splitting, the point at which the split could occur (Split
column) and the improvement that would have been achieved (Improve. column) due to the
split are provided. By default, CART produces 5 competitors. They are ranked based on the
‘improvement’ each could yield. If the variables HHSIZE had been used as the 1  primaryst

splitting variable, the split could have occurred at 8.500 and the reduction in impurity could
have been 0.031.  The level of improvement in impurity reduction is slightly less than the
improvement obtained by the primary splitting variable ASSTV1F1. 

!! Descriptions for node 6 below are similar to the one given above. 
 
          *             Node  6 was split on variable HHSIZE
         * *           A case goes left if variable HHSIZE <=        8.500
        *   *          Improvement =  0.029          C. T. =  0.041
       *  6  *
        *   *           Node     Cases     Class      Cost
         * *               6         118           1          0.390
          *                -6           93           1          0.254     ! Negative numbers under ‘Node’ column
         * *              -7           25           0          0.404         indicate a terminal node.  Nodes 6 and 7
        *   *                                                                        are terminal.
       *     *
      93    25         Number Of Cases                 Within Node Prob.
      *       *      Class   Top  Left   Right         Top        Left        Right
     *         *         0       26    13       13          0.278      0.181       0.596
 ---*-     --*--      1       92    80       12          0.722      0.819       0.404
 |     |      |     |
 |     |      |     |      Surrogate                Split              Assoc.       Improve.
 |  6 |      |  7 |    1 BOENUMM1    s                1.500         0.318          0.004
 |     |      |     |    2 BOEVM1          s    90000.000         0.284          0.004
 |     |      |     |    3 ASSTVM1        s   204425.000         0.196          0.005
 -----     ------   4 VACNUMM1   s                3.500         0.159    .332475E-03
                        5 VACVM1         s   225000.000         0.113    .108466E-03
 
                          Competitor          Split                 Improve.
                        1 ASSTVM1      25375.000            0.023
                        2 DEPRAT                 0.649            0.013
                        3 VILL10                    1                   0.010
                        4 ASSTV2F2     20750.000            0.005
                        5 ASSTV1F1    284575.000            0.005
==========
!! Rectangular boxes indicate those nodes are terminal.  They do not split any further.  
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 ===========================
 TERMINAL NODE INFORMATION
 ===========================
 
 [Breiman adjusted cost, lambda = 0.035]
                                                                                       Complexity
 Node    N   Prob  Class    Cost   Class     N        Prob    Threshold
 -------------------------------------------------------------------------------
   1    25       0.097   0       0.366     0       14       0.634       0.031
                                       [0.820]    1         11       0.366
 
   2    21       0.070   1       0.176     0           2       0.126       0.018
                                       [0.747]    1         19       0.874
 
   3    12       0.046   0       0.423     0           6       0.577       0.018
                                       [1.165]    1           6       0.423
 
   4    17       0.057   1       0.215     0           2       0.154       0.025
                                       [0.866]    1         15       0.846
 
   5    82       0.319   0       0.353     0         47       0.647       0.022
                                       [0.523]    1         35       0.353
 
   6    93       0.315   1       0.254     0         13       0.181       0.041
                                       [0.426]    1         80       0.819
 
   7    25       0.096   0       0.404     0         13       0.596       0.041
                                       [0.862]    1         12       0.404
 
 -------------------------------------------------------------------------------
!! This table provides information for each terminal node.  Among other things, it provides the
number of terminal nodes ('Node' column), number of cases at each terminal node ('N'
column),  weighted probability of reaching the node ('Prob' column, if priors were data, no
need for weighting), predicted class for the node 'Class' column, misclassification costs
weighted by priors ('Cost' column), class distribution of the cases within each node ('Class
column) and the number of cases within each class, weighted probability distribution of the
cases within each class at a node, and finally the complexity parameter used to arrive at each
node via pruning ('Complexity Threshold' column).
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 ==========================
 MISCLASSIFICATION BY CLASS
 ==========================
 
              |------CROSS VALIDATION------||-----LEARNING SAMPLE--------|
              Prior    N          Mis-                                N         Mis-
 Class    Prob.    N      Classified     Cost               N     Classified         Cost
 -----------------------------------------------------------------------------------------------
   0        0.426     97         42           0.606               97         17               0.245
   1        0.574   178         71           0.399             178         64               0.360
 -----------------------------------------------------------------------------------------------
  Tot     1.000   275      113                                 275         81

!! The misclassification by class table summarizes the number of cases in each class in the data
and prediction of the number of cases misclassified ('N Misclassified ' column) by class from
cross validation test as well as from learning sample. The table is for the entire tree and
consists of two panels—'CROSS VALIDATION' AND 'LEARNING SAMPLE'.  The learning
sample is the sample that produced the tree. 

!! The performance of the tree was tested using cross validation.  The results are shown under
'CROSS VALIDATION' panel.  The number of cases misclassified is an estimate or 'best'
prediction of cases that would be misclassified if the tree is applied to new data set.

!! Under the Learning Sample panel, the number of cases misclassified is generated by
dropping down the tree all cases in the learning sample, and counting the number of cases
misclassified from each class.  The 'Cost' column shows the misclassification cost for each
class. 
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!! The following two tables provide detailed information on Cross validation.  The outcome is
similar to the tables generated from Logistic and Probit Models.  Entries along the diagonals
of the matrix represent correct classification, while off diagonal entries represent
misclassification.  The tables help the analyst see where misclassifications are actually
occurring.  

 ======================================
 CROSS VALIDATION CLASSIFICATION TABLE
 ======================================
 
       ACTUAL            PREDICTED CLASS                ACTUAL
        CLASS                  0                       1                       TOTAL
 ----------------------------------------------------------------------------
            0                     55.000              42.000                   97.000
            1                     71.000            107.000                 178.000
 ----------------------------------------------------------------------------
 PRED. TOT.           126.000            149.000                 275.000
 CORRECT                 0.567               0.601
 SUCCESS IND.         0.214              -0.046
 TOT. CORRECT       0.589
 
     SENSITIVITY:        0.567     SPECIFICITY:           0.601
 FALSE REFERENCE:  0.563   FALSE RESPONSE:   0.282
 REFERENCE = CLASS 0, RESPONSE = CLASS 1
 ----------------------------------------------------------------------------
 
 
 ==================================================
 CROSS VALIDATION CLASSIFICATION PROBABILITY TABLE
 ==================================================
 
       ACTUAL  PREDICTED CLASS      ACTUAL
        CLASS                0                  1              TOTAL
 --------------------------------------------------------------------
            0                   0.567           0.433            1.000
            1                   0.399           0.601            1.000
 --------------------------------------------------------------------
 
!! This is the most useful table.  It is derived from the above table.  The goodness of any
classification tree is judged from the entries in this table.  It helps the analyst either to retain
the current tree or think of refining the tree.
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 =====================================
 LEARNING SAMPLE CLASSIFICATION TABLE
 =====================================
 
       ACTUAL          PREDICTED CLASS      ACTUAL
        CLASS                   0                1                TOTAL
 --------------------------------------------------------------------------------
            0                     80.000        17.000            97.000
            1                     64.000      114.000          178.000
 --------------------------------------------------------------------------------
 PRED. TOT.           144.000      131.000          275.00
 CORRECT                 0.825         0.640
 SUCCESS IND.         0.472        -0.007
 TOT. CORRECT       0.705
 
     SENSITIVITY:        0.825     SPECIFICITY:        0.640
 FALSE REFERENCE:  0.444   FALSE RESPONSE:   0.130
 REFERENCE = CLASS 0, RESPONSE = CLASS 1
 --------------------------------------------------------------------------------
!! The description given for Cross validation classification table holds.  However, these
predictions are generated by using the learning sample as a test sample. 
 
 
 =================================================
 LEARNING SAMPLE CLASSIFICATION PROBABILITY TABLE
 =================================================
 
       ACTUAL     PREDICTED CLASS     ACTUAL
        CLASS          0            1                       TOTAL
 ----------------------------------------------------------------
            0              0.825     0.175                   1.000
            1              0.360     0.640                   1.000
 ----------------------------------------------------------------
 
!! This summary is produced from the above table.  Diagonal entries are probabilistic
predictions of correct classification.  Again, these probability predictions are based upon the
application of the tree to the learning sample.  Predictions based on the learning sample
underestimate 'true'  misclassification rates.  Predicted misclassification rates based on the
data set from which the tree is constructed and are not good indicators of the predictive
accuracy of a tree.
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 =====================
 VARIABLE IMPORTANCE
 =====================
 
                           Relative                   Number of      Minimum
                         Importance    Categories       Category
 ----------------------------------------------------------------------------
 HHSIZE 100.000
 ASSTVM1 94.499
 ASSTV1F1 77.578
 ASSTVF1 50.548
 DEPRAT 36.527
 VILL9 33.614 2 0
 VILL2 20.054 2 0
 VILL10 14.715 2 0
 MPEST 9.616 2 0
 VACNUMM1 9.100
 BOENUMM1 7.784
 BOEVM1 7.625
 VACVM1 6.290
 MINPUT 3.663 2 0
 MSEED 3.663
 ASSTV2F2 2.522
 CASHSENT 1.357 2 0
 NONAGDUM 1.286 2 0
 REMIT 0.120 2 0
 ADTVF1 0.000
 ADTNUMF1 0.000
 VILL1 0.000 2 0
 FNNAGDUM 0.000 2 0
 VILL3 0.000 2 0
 FINPUT 0.000 2 0
 FLLABOR 0.000 2 0
 FSEED 0.000 2 0
 FPEST 0.000 2 0
 FFERT 0.000 2 0
 MLLABOR 0.000 2 0
 MFERT 0.000 2 0
 CASHGIVE 0.000 2 0
 VILL4 0.000 2 0
 VILL5 0.000 2 0
 VILL6 0.000 2 0
 VILL7 0.000 2 0
 VILL8 0.000 2 0
 CEMENT 0.000
 ----------------------------------------------------------------------------
!! Variable importance table provides list of all the variables used and not used in the tree
building process.  A score is attached to each variable, and is based on the improvement each
variable makes as a surrogate to the primary splitting variable.  Variable importance measure
gives due recognition to the variables whose significance is masked or hidden by other
variables in the tree building process.
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 =======================
 MISCLASSIFICATION COSTS          
 =======================
 
!! Table of misclassification costs used in this analysis. 

                Cost if classified as
 Class           0            1
 --------------------------------------
    0|         0.000       1.400
    1|         1.000       0.000
 
 
 Total CPU TIME: 00:00:07.58
 --------------------------------------
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